666 research outputs found

    Spectrum of Curvature Perturbation of Multi-field Inflation with Small-Field Potential

    Full text link
    In this paper, we have studied the spectrum of curvature perturbation of multi-field inflation with general small-field potential. We assume that the isocurvature perturbation may be neglected, and by using the Sasaki-Stewart formalism, we found that the spectrum may be redder or bluer than of its corresponding single field. The result depends upon the values of fields and their effective masses at the horizon-crossing time. We discuss the relevant cases.Comment: 8 pages, no figure, to publish in JCA

    Spacetime Properties of ZZ D-Branes

    Full text link
    We study the tachyon and the RR field sourced by the (m,n)(m,n) ZZ D-branes in type 0 theories using three methods. We first use the mini-superspace approximation of the closed string wave functions of the tachyon and the RR scalar to probe these fields. These wave functions are then extended beyond the mini-superspace approximation using mild assumptions which are motivated by the properties of the corresponding wave functions in the mini-superspace limit. These are then used to probe the tachyon and the RR field sourced. Finally we study the space time fields sourced by the (m,n)(m,n) ZZ D-branes using the FZZT brane as a probe. In all the three methods we find that the tension of the (m,n)(m,n) ZZ brane is mnmn times the tension of the (1,1)(1,1) ZZ brane. The RR charge of these branes is non-zero only for the case of both mm and nn odd, in which case it is identical to the charge of the (1,1)(1,1) brane. As a consistency check we also verify that the space time fields sourced by the branes satisfy the corresponding equations of motion.Comment: 32 pages, 4 figures. Clarifications on the principal characterization of ZZ branes added. Reference adde

    Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective

    Get PDF
    Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions.The authors acknowledge the support of CSIC (Spanish Council for Scientific Investigation) and the Ministerio de Economía y Competitividad, Spain (research grant reference BFU2013-48907-R).Peer reviewedPeer Reviewe

    Tachyon Effective Dynamics and de Sitter Vacua

    Full text link
    We show that the DBI action for the singlet sector of the tachyon in two-dimensional string theory has a SL(2,R) symmetry, a real-time counterpart of the ground ring. The action can be rewritten as that of point particles moving in a de Sitter space, whose coordinates are given by the value of the eigenvalue and time. The symmetry then manifests as the isometry group of de Sitter space in two dimensions. We use this fact to write the collective field theory for a large number of branes, which has a natural interpretation as a fermion field in this de Sitter space. After spending some time building geometrical insight on facts about the condensation process, the state corresponding to a sD-brane is identified and standard results in quantum field theory in curved space-time are used to compute the backreaction of the thermal background.Comment: 28 pages, 1 eps figure. Uses graphicx, setspace. v2:corrected typos, added references, clarified discussion on backreactio

    Stringy Instantons and Quiver Gauge Theories

    Get PDF
    We explore contributions to the 4D effective superpotential which arise from Euclidean D3 branes (``instantons'') that intersect space-filling D-branes. These effects can perturb the effective field theory on the space-filling branes by nontrivial operators composed of charged matter fields, changing the vacuum structure in a qualitative way in some examples. Our considerations are exemplified throughout by a careful study of a fractional brane configuration on a del Pezzo surface.Comment: 30 pages, 4 figures; v2: reference added; v3: confusing minor error in axion charges fixed (thanks to D. Green for pointing it out

    Ghost D-brane, Supersymmetry and Matrix Model

    Full text link
    In this note we study the world volume theory of pairs of D-brane and ghost D-brane, which is shown to have 16 linear supersymmetries and 16 nonlinear supersymmetries. In particular we study a matrix model based on the pairs of D(-1)-brane and ghost D(-1)-brane. Since such pairs are supposed to be equivalent to the closed string vacuum, we expect all 32 supersymmetries should be unbroken. We show that the world volume theory of the pairs of D-brane and ghost D-brane has unbroken 32 supersymmetries even though a half of them are nonlinearly realized.Comment: 12 pages, references adde

    Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system

    Full text link
    Realistic, first-principles-based interatomic potentials have been used in molecular dynamics simulations to study the effect of cation composition on the ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical properties to the degree of lattice disorder. Across the composition range, this system retains a disordered fluorite crystal structure and the vacancy concentration is constant. The observed trends of decreasing conductivity and increasing disorder with increasing Nb5+ content were reproduced in simulations with the cations randomly assigned to positions on the cation sublattice. The trends were traced to the influences of the cation charges and relative sizes and their effect on vacancy ordering by carrying out additional calculations in which, for example, the charges of the cations were equalised. The simulations did not, however, reproduce all the observed properties, particularly for Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse scattering features observed in small area electron diffraction studies were not always reproduced. Consideration of these deficiencies led to a preliminary attempt to characterise the consequence of partially ordering the cations on their lattice, which significantly affects the propensity for vacancy ordering. The extent and consequences of cation ordering seem to be much less pronounced on the Zr2Y2O7 side of the composition range.Comment: 22 pages, 8 figures, submitted to Journal of Physics: Condensed Matte

    Reverse Monte Carlo modeling of amorphous silicon

    Full text link
    An implementation of the Reverse Monte Carlo algorithm is presented for the study of amorphous tetrahedral semiconductors. By taking into account a number of constraints that describe the tetrahedral bonding geometry along with the radial distribution function, we construct a model of amorphous silicon using the reverse monte carlo technique. Starting from a completely random configuration, we generate a model of amorphous silicon containing 500 atoms closely reproducing the experimental static structure factor and bond angle distribution and in improved agreement with electronic properties. Comparison is made to existing Reverse Monte Carlo models, and the importance of suitable constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure

    The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Full text link
    (ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.Comment: 28 pages, 12 figures, accepted for publication in the International Journal of Astrobiolog

    Exact operator bosonization of finite number of fermions in one space dimension

    Get PDF
    We derive an exact operator bosonization of a finite number of fermions in one space dimension. The fermions can be interacting or noninteracting and can have an arbitrary hamiltonian, as long as there is a countable basis of states in the Hilbert space. In the bosonized theory the finiteness of the number of fermions appears as an ultraviolet cut-off. We discuss implications of this for the bosonized theory. We also discuss applications of our bosonization to one-dimensional fermion systems dual to (sectors of) string theory such as LLM geometries and c=1 matrix model.Comment: 47 pages, 1 figure; (v2) typos correcte
    corecore